Concurrency Patternsin ={(50)

golangbyte.com

https://golangbyte.com/

Contents

n Worler Pool
n Semaphore
B Pipeline
n Fan In

B Fan Out
ﬂ project

func main() {
var wg sync.WaitGroup

numiWorkers :

numArr := [lint{5, 7, 4, 77, 2}
jobs := make(chan int, len(numArr))

worker pool is a concurrency pattern that aims at results := make(chan int, len(numarr))
reusing goroutines. It initiallizes them at first then wg . Add (numiorkers)
assigns them tasks. Once task is done, new task for i := @; 1 < numWorkers; i++ {
will be assigned to worker.This helps in preventing P
unwanted initialization of concurrent functions. A ek

: jobs <- i
Worker pool pattern is used as a component In close(Jjobs)

many Complex patterns. for i := @; i < len(numArr); i++ {

fmt.Println(<-results)
}

worker(id int, jobs chan int, results chan int) {

for job := range jobs {
fmt.Println("worker ", id, "started job ", job)
time.Sleep(1 * time.Second)
results <- job * 10
fmt.Println("worker ", id, "finished job ", job)

type Semaphore struct {

ch chan struct{}

Semaphore pattern is used to limit access control
to resource in a given instant. It helps in limiting
concurrent workers at a time by blocking number
of workers at aa instant to the resource.

Semaphore is a struct with channel of user
defined capacity. The worker acquires a token
from channel and releases it after work is done for
other worker.

There are standard libraries also available for
semaphore patters operations.

Pipeline pattern is a multi stage pattern for processing the
task.

It breaks down task into smaller subtasks working in parallel
and moving data via channels for efficient operation of task
concurrently.

The functions are communicated via stage channels, each for
a specific responsiblity. this completes the operation in multi
steps.

This significantly improves the time and makes better use of
resources.

func

func

}

sliceToChan(numbers []int) <-chan int {

result := make(chan int)
go func() {
for _, n := range numbers {
result <- n
}
close(result)
1O

return result

squareFunc(in <-chan int) <-chan

out := make(chan int)
go func() {

for n := range in {

out <- n * n

¥

close(out)
3O
return out

func main() {

}

tart := time.Now()
nums := []int{1, 4, 5, 6, 2, 8}
1an := sliceToChan(nums)
el := squareFunc(dataChan)

for n := range finalChannel {
fmt.Println("value is ", n)

1
}

fmt.Println(time.Since(start))

Fan in iS a pattern that iS Used to get | func fanin(wg *sync.WaitGroup, inchans []chan int) chan int {

] ’ outchan := make(chan int)
data from a lot of channels as input go func() {

. . . wg.Wait()
and combine them into a single e —
output channel. for n := range ch {
outchan <- n
}
« }

This is used with pipelines for more -lose(outchan)

effective operations of big tasks "
with fanout. | return outchan

Fanout is a pattern that takes the task
and spreads it across multiple
channels along with worker
goroutines.

So tasks can be processed in parallel
In Independent channels with
Independent workers.

Fanin is wused with fanout for
processing big tasks effeciently.

func fanout(wg *sync.WaitGroup, inchan chan int, n int) []|chan int {

tchans := make([]chan int, n)

TOR I =0
wg.Add (1)
outchans[i]

}

return outchans

< n; i++ {

squareFunc(wg, inchan)

A project that combines fanin fanout with pipeline
pattern to process the worker task more
effeciently. the worker function can be updated
along with input job channel. for other functional
operations if required.

github.com/subpxl/golangbyte golangbyte.com

A\

https://golangbyte.com/
https://github.com/subpxl/golangbyte

