
Concurrency in
golangbyte.com

https://golangbyte.com/

Goroutines

Channels Unbuffered

Waitgroup

Channels Buffered

Contents

Mutex and Atomic

Select

Context

1

3

2

4

5

6
5
7

Goroutiune

Goroutines are functions that run concurrently in
their own runtime. they are extremely lightweight
just 2 Kb compared to 8 Mb os thread.

Any function can be run as a goroutine by adding
o keyword in-front of it.

Thousands of goroutines can be run at once
without heavy memory or cpu time cost.

They can run in sync or concurrently.

They run in their own forked runtime.

Waitgroup

Goroutines gets executed in a fork join
pattern. It means main routine has no
knowledge of other goroutines. It can get
closed and goroutines can still run. This is
called goroutine leak.

To let main wait for all goroutines to execute
successfully before exiting we use
waitgroups that tells main routine how many
goroutines to wait for and also gives done
signal on each goroutine completion.

So all goroutines execute successfully then
the program gets closed.

Channels
Unbuffered

Channels are used to communicate between
goroutines, they work as queues of specific types.
they can be buffered or unbuffered.

Unbuffered channels have zero capacity so after
pushing value into them pulling should be done
immediately. This keeps goroutine communication
in synchronization.

Channels Buffered

Buffered channels have a capacity as assigned to
them. They can hold value in them before pulling
till their set capacity.

They provide asynchronous communication
between goroutines.

They may hold some value in them if all values
were not consumed. So they should be checked
for any residual value in them after execution.

Channels Buffered 2

Buffered channels works as an asynchronous
communication pipeline between two goroutines.

This makes them continue their operations after
value is pushed into the channel so they donot
block waiting for value to be pulled from channel.

Directed Channels

Channels can be directed as
read only
write only
read and write channel

As required by the program to prevent any
unwanted write or read to a channel.

mutex

If two goroutines access same share resource and
update it simultaneously, it can cause race
conditions or unstable value assignment to the
resource. to protect from this , we use mutual
exclusion lock or mutex. it locks the resource
before updating and releases after it is done for
other goroutines to read or update its value.

Mutex lock are of two types :-
Mutex lock which does not allow read or write
to other goroutines.
RWLock mutex that allows read but not write to
other goroutines during operation.

select

Select is used to wait on multiple channel
operations without blocking execution
when working with multiple channels
and goroutines.

It helps in coordinating communication
between goroutines and is a essential
block for many concurrency patterns.

It is like switch statement for
concurrency.

Context

Context is used to manage
cancellation, deadlines and
request scoped values across
multiple goroutines.

It helps in propagating signals
through concurrent operations
to multiple goroutines to
change their behavior or return
as defined.

golangbyte.comgithub.com/subpxl/golangbyte

https://golangbyte.com/
https://github.com/subpxl/golangbyte

